
 46

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 3

Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2014-0032

A Prevention Model for Session Hijack Attacks in Wireless
Networks Using Strong and Encrypted Session ID

S. S. Manivannan, E. Sathiyamoorthy
School of Information Technology and Engineering, VIT University, Velllore, Tamil Nadu, India
Emails: manivannan.ss@vit.ac.in esathiyamoorthy@vit.ac.in

Abstract: Most of the web applications are establishing the web session with the
client. It is very important to protect the wireless networks against session hijacking
attack. Session Hijack attack is easy to execute and difficult to detect. Wireless
networks do not have specific boundary regions for the packets to be transferred.
As the data packets are transferred in air, the chances of sniffing the network
packets by the hackers or attackers are high by using the network sniffing tools. In
this paper, we have proposed the Strong and Encrypted Session ID to prevent the
session hijack attacks in web applications. Session ID is generated and the
generated Session ID is encrypted, using a Secret Key Sharing algorithm and
decrypted at the client side. We have tested the integrity of the session ID of length
32, 92 and 212 characters in a web application. Attacks are executed to capture the
session ID of a web application. Our experimental results proved that 212
characters encrypted session ID completely prevents the session hijack attacks in
web applications of wireless networks.

Keywords: Wireless networks, session Hijack attacks, network sniffing, encrypted
session ID, SKS algorithm.

1. Introduction

Wireless networks have emerged in the areas of education, information technology
and communication, entertainment and commercial applications. Wireless networks
are weakly secured against variety of attacks, such as Denial of Service, brute force
attack and session Hijack attacks. Session Hijack attack is a severe threat to the
wireless networks. Most of the web applications are involved in creating the session
with the client. HTTP is the default protocol responsible for establishing the session
at the application layer. The web session is the data transfer and communication

 47

between the client and the web server for the specific time period. The server side
web sessions cannot handle the congestion perfectly. In client side web sessions,
session cookies are used to maintain the state of the web applications. A Session
Identifier is a unique ID assigned by the web server to each web session when a
session is established between the client and the server. HTTP is a stateless
protocol. Each request is independent. HTTP does not monitor the requests. Session
attributes are used to maintain the state of the web applications. Session IDs are
used to maintain the state of the sessions in web applications. Cookies are used to
store the session IDs. There are several types of cookies available to maintain the
state of the web applications that are listed in Table 1.

Table 1. Types of cookies
No Cookie Functionality and behaviour

1 Session cookie Session cookies get deleted from the browser when the user
closes the browser

2 Persistent cookie It has a field “expire”. The persistent cookies get deleted
after the time period is expired.

3 Secure cookie Cookies are encrypted when it was transmitted
4 HTTP only cookie Cookie will be used only for http or https protocol
5 Third party cookies Third party cookies are set by multiple domain names
6 Super cookie To track the technology that does not rely on HTTP cookies
7 Zombie cookie The cookie are automatically recreated

There are several vulnerabilities that attack the current web application and

they are listed in Table 2.
Table 2. Web application vulnerabilities

No Vulnerability Description

1 Session sniffing Unauthorized way of viewing the session’s data during
data transmission

2 HTTP packet
sniffing

Sniffing the http packet of a web application session
established between a client and a server

3 Session prediction Predicting the session ID of a web session by using a
brute force attack

4 Session fixing Session ID is fixed by the attacker before the client
establishes the session with the server

5 Session Hijacking Session ID is sniffed and the session is hijacked after the
client has established the session with the server

Based on the survey conducted in 50 web applications that belong to national

and international companies, the percentage of web application vulnerabilities are
analyzed and listed in Table 3.
 Table 3. Percentage of Web application vulnerabilities

No Vulnerabilities Percentage
1 SQL injection 30 %
2 Session Hijacking 28 %
3 Cross site scripting 18 %
4 Distributed DoS attack 8 %
5 Phishing attack 8 %
6 Cloning attack 4 %
7 Others 4 %

 48

2. Related works

Alex, Jason, Huany and Mohamed used the Keyed Hash Message Authentication
Code (KHMAC) to verify the authentication [1] of the client and also to defend the
replay attacks and volume attacks. Chomsiri has presented the HTTPS hacking
protection [2] using ARP table, ARP watch and Anti sniff. Antony has discussed
the disclosure of the online cookie use and its effects on consumer’s trust and
anticipated patronage [3] using three different studies

Ben Adida has presented the method of securing web sessions against
Eavesdropping [4] using the secret token. The secret token is transferred over SSL
stream and thus prevents the web session from eaves dropping attacks. Collin
Jackson and Adam Barth have discussed protecting the high security websites from
network attacks [5] using the Force Non https stream converted to https stream by a
force https cookie. Juels, Markus and Tom have narrated the cache cookies for
authenticating the web browsers [6] using an identifier tree and the Rolling
Pseudonym scheme.

Nenad, Christopher and Kirda have presented the static analysis tool [7] called
pixy to detect the web application vulnerabilities, such as cross site scripting, SQL
injection and command injection. Richard Ford and Michael have presented the
man in the middle attack to attack the https protocol [8]. Hacker injects the
malicious code into the certificate and sends the fake certificate in the name server
to the client. Shirley Gaw and E.W. Felten have presented various methods of
storing the passwords and different methods of managing the online user passwords
[9].

Paul Ritchie has discussed the list of security risks [10] that affects the web
applications which are designed using Asynchronous Java script and XML (AJAX).
The cross site scripting attack can be prevented by validating the client side user
inputs to the web applications. Adam Barth, Collin Jackson and Jhon Mitchell have
discussed Cross Site Request Forgery attacks and their defense methods [11].

Ben Adina has presented the method of securing the web application session
against eavesdropping and session hijacking attacks [12] using the Session Lock
protocol. F. Wang and Y. Zhang have presented the Secure Authentication and Key
Agreement (SAKA) method [13] which provides mutual authentication and secure
key management for session initiation protocol.

Roberto, Davide Ariu, Prahlad, Giacinto and Wenke Lee have presented the
multiple classifier system for anomaly detection [14] that has a high detection rate
against shell code attacks, polymorphic attacks and generic attacks. Ori Eisen has
discussed the method of catching the man-in-the-middle and man-in-the-browser
[15]. Yi pin Liao and S. S. Wang have presented the Self Certified public keys
(SCPKs) which are more secure than the traditional HTTP digest authentication
protocol for Session Initiation Protocol [16].

Cichon, Golebiewski and Miroslaw have discussed the advantages of key
redistribution [17] over key pre-distribution in ad hoc networks. Armando, Roberto,
Luca, Jorge, Giancarlo and Sorniotti have presented the flaw in the authentication
of a single sign on protocols [18]. Self signed client certificate is the suggested

 49

solution to overcome the authentication flaw. Natallia Bielova has discussed the
survey of java script security policies in the web browser [19]. He has compared the
existing security policies with the current security policies for web developers. Y.
Xiang, X. Shi, J. Wu, Z. Wang have presented the fast secure BGP routing protocol
[20]. Traditional Internet routing protocols, such as Inter Domain Routing protocol,
Border Gateway protocol are weak against malicious attacks. The presented FS-
BGP is able to secure the AS paths and also prevent the prefix hijacking and routing
attacks.

Nikolay Dokev and Ivan Blagoev have presented the signer and sender [21] by
using HTTP method to transmit the authenticated data over networks. Evelina
Pencheva and Ivaylo Atanasov have discussed the open service access and CAMEL
application part protocol [22] to control the session in mobile networks.

3. Proposed system

The proposed system architecture is shown in Fig. 1. The web server generates the
Session ID of required length using a Session ID generation algorithm. The
generated session ID is encrypted at the server side and decrypted at the client side
using the Secret Key Sharing (SKS) algorithm. When the client receiving the
encrypted session ID, attacks are executed to capture the session ID and the results
are analyzed and recorded.

Fig. 1. Proposed system architecture

 50

3.1. Proposed approaches

We have presented strong and Encrypted Session ID for the sessions in three
different cases, such as 32,92 and 212 characters.

Case 1. 32 characters Session ID with encryption.
Case 2. 92 characters Session ID with encryption.
Case 3. 212 characters Session ID with encryption.

3.2. Session establishment

The client establishes the session with the server. The client is authenticated by the
server by its login credentials.

3.3. Session ID generation

The web server generates the session ID using the following algorithm.

Algorithm 1
1. Initialize the following variables
 result, random_no, tempbuffer, resut_byte_length;
3. While result_byte_length < sessionIdLength then
 Generate the random_no using Message Digest
4. For (i= 0 ; i<randnum.length and result_byte_length < sessionIdLength ; i++)
 byte b1 = (byte) ((randnum[i] & 0xf0) >> 4);
 byte b2 = (byte) (randnum[i] & 0x0f);
 if (b1 < 10)
 tempbuff.append((char) ('0' + b1));
 else
 tempbuff.append((char) ('A' + (b1 – 10)));
 if (b2 < 10)
 tempbuff.append((char) ('0' + b2));
 else
 tempbuff.append((char) ('A' + (b2 – 10)));
 resultLenBytes++;
 End for
5. if (jvmRoute != null)
 {
 tempbuff.append('.').append(jvmRoute);
 }
 result = tempbuff.toString();
 End while

3.4. Encryption and decryption of a session ID

The generated session ID is encrypted at the server side and decrypted at the client
side using a Secret key sharing algorithm.

 51

Algorithm 2. Secret key sharing
Step 1. The client establishes the session with the server using a login

password.
Step 2. The client requests a RSA Public key from the server.
Step 3. The client encrypts the login password with RSA Public key.
Step 4. The server decrypts the login password and stores it in the session.
Step 5. The server encrypts the generated Session ID with AES and sends it to

the client.
Step 6. The client decrypts the Session ID using AES with the login Password.
Step 7. Both the client and the server have now the same “secret key” which is

used for communication.

Fig. 2. Secret key sharing

Case 1. 32 Character Session ID encrypted with SKS
In this case the web server generates the 32 characters Session ID and encrypts

the 32 character Session ID, using SKS algorithm and assigns it to the client.
(i) Generate session ID =32 chars
(ii) SIDnew Encrypt { SID32 chars}
(iii) Client receives the encrypted session ID
(iv) While client receiving SIDnew

do
 capture session ID ()

 execute packet sniffing attack ()
 execute man-in the middle attack ()
end

(v) SIDattacked number of session IDs hijacked
(vii) SIDprevented number of session IDs not hijacked

 (viii) SID decrypt(SIDnew)

 52

Case 2. 92 Character Session ID encrypted with SKS
In this case the web server generates the 92 characters Session ID and encrypts

the 92 character Session ID using SKS algorithm and assigns it to the client.
(i) Generate session ID =92 chars
(ii) SIDnew Encrypt { SID92 chars}
(iii) Client receives the encrypted session ID
(iv) While client receiving SIDnew

do
 capture session ID ()

 execute packet sniffing attack ()
 execute man-in the middle attack ()
end

(v) SIDattacked number of session IDs hijacked
(vii) SIDprevented number of session IDs not hijacked

 (viii) SID decrypt(SIDnew)
Case 3. 212 Character Session ID encrypted with SKS
In this case the web server generates the 212 characters Session ID and

encrypts the 212 character Session ID using SKS algorithm and assigns it to the
client.

(i) Generate session ID =212 chars
(ii) Sinnew Encrypt { SID212 chars}
(iii) Client receives the encrypted session ID
(iv) While client receiving SIDnew

do
 capture session ID ()

 execute packet sniffing attack ()
 execute man-in the middle attack ()
end

(v) SIDattacked number of session IDs hijacked
(vii) SIDprevented number of session IDs not hijacked

 (viii) SID decrypt(SIDnew)

4. Experimental analysis
4.1. Experimental setup
The web application www.nationalrailways.com is designed, using Java and
Apache Tomcat Server. The client is authenticated using the login credentials, such
as user name and password. The client is logged in to the web server by establishing
the web session with the server. The server assigns the unique session ID for each
time the client logs in to the server.

4.2. Experimental results
RSA keys used in Encryption and Decryption for the following cases. For example,
each time these values will also change per session. The values of n, e, d, p, q are
given below.

 53

'n' =>
'1643792454108575576415437694086764392674735631416672307097484981678017743
96077697951590761314957322298258693612001197190127717413680981711035447584
91901880760371776695658532514991062458591035466617237846367360829245584727
98351274872921007903797321908936339380611167975236458824568782448622020615
03957629180613',
 'e' => '65537',
'd' =>
'6367792670538553295700921949047831667794709585487049534246448374939578327
30765917816651089958975311428382701896865342365833420769722868559709468435
52864013244136732082051193504831296540655412738027597902495009180740066924
63946672374338944522011025261024936409224027813074954192301334516527497435
2280503598225'
 'p' =>
'1331255825499617455991697008636294524462166555653296779588187495030074316
30337423661240129102196594278989483276005259649883259288825479844254230333
63239507'
 'q' =>
'1234768271148532847955757703257522075111067529980466928268479856808197140
62893000689159575591058916066782134213417962104069319370099392126733376830
74657159'

Fig. 3 shows the generated secret key using the secret key sharing algorithm.
The generated key is shared between the client and the server.

Fig. 3. Generated secret key

 54

Case 1. 32 Characters encrypted session ID
The server generates the 32 characters session ID and encrypts the 32

characters session ID using SKS algorithm. The encrypted session ID is assigned to
the web client. At each session the server assigns the unique session ID to the client.
The encrypted session ID, assigned to the 4 sessions are given in Table 4.

Table 4. 32 character plain session ID and encrypted session ID
Session ID (Length=32) Encrypted session ID
61BBF1C93852828924718B
CA037854F0

iQHBPW6HDFKejs7QlOnmUVgzCPNJz1oyCF4S0x/+Ahlvqp
NuS9IJLg==

DDAF120DB46480BD6F2F3
3DA89C7EF81

tQIfNJqHDFJmqTakxTMDWC0rCKjODO5RdRNGecol1U6
W8WBm+t4DUA==

945A6E5AB65C1203B78B1
CEC54C6E22F

rAIGmrSHDFIv+gvuRmqTb1WAvUVlWAhjTR34zXh5N84i
Oxrj+FglLg==

0A35043F669179D7D22999
3FD0519C17

4wN2FsKHDFI48ycrLQPfa4GDDi/GAfaymvbalYA0itjCHSop
/qosmw==

The attacks are executed to capture the Session ID. The integrity of the session

ID is tested by creating 10 sessions, 20 sessions and 30 sessions between the client
and the server in the web application. The observed results for each session are
given in Table 5.

Table 5. Results of 32 characters encrypted session ID

No Metrics
50 chars encrypted Session ID

 10
sessions 20 sessions 30 sessions

1 Number of the unique session IDs
generated 10 20 30

2 Number of the session IDs attacked 1 2 2
3 Number of the session IDs prevented 9 18 28
4 Session Hijack prevention rate 90 % 90 % 94 %

Fig. 4. No of Session IDs prevented for 10, 20, 30 sessions

 55

Fig. 5. Session Hijack prevention rate for 32 chars encrypted session ID

The results show that 32 characters encrypted session ID has a session hijack

prevention rate of 90 % for 10 sessions, 90 % for 20 sessions and 4 % for 30
sessions.

Case 2. 92 character encrypted session ID
The server generates the 92 characters session ID and encrypts the 92

characters session ID using SKS algorithm. The encrypted session ID is assigned to
the web client. At each session, the server assigns the unique session ID to the
client. The encrypted session ID, assigned to the 4 sessions are given in Table 6.

Table 6. 92 character plain session ID and encrypted session ID
Session ID (Length=92) Encrypted Session ID

13B1F75CD8026ACB057E037471A93
C699B7E3738107E71F109D9888B145
93f12e1cf999f58dede5db9bd87c578ec

QgA7Xe6IDFI6pFqFxC11Zz3LmYd9x0IKyChFk27tY
DyrSj59QwcTv76A+y9NSRCJWIhP6j2fUOYThjog2H
pScaUNjltaLr2PFsQ4G0gixR27f0FS0IzPiGIS/gV6bOG
gKGQ3Mw==

38C8FFD13BF55A33E2DDEE751F046
01D89AFB06DA2DD8819C149354B79
2657a11398b5b340b55465d451a74af34
2

2gIvbhKJDFJRWfZ3ESEtBbF5pnGwbahRc0oH8xKVV
2XnWG8WTGuv9ElaJUwAPu7V5vPbaAaMJ38coRUv
UXwFVSZZ/tlt97LCvcVHPbjYcqwBDAn3tZLT0xrAH
tL7V1yIQ704Uw==

685170F3AE1E52434739E2587256F5C
9F4BF4B912BD5606DBDA716A75A4
B9f4a276b054fc84518e4586a8f790d10

cAPlLyKJDFKm52dBdIUj5MePw/0VN11k+WEfkImir
EGHFuEgAC/qn8s6uN0dWKKF6ClC94Xg9OBBakyP
GC/hsUlL5/9+1S9naBJKeraUeSTlSBrdgfO3iUsbBM1
G2mqFrIxCmA==

1F6F15E9D28E5149B05294FD65897C
E28E98FB8D0C7442C781EACE1FBB
9265c530f4ffd3843da112cab046118799

MwNL50OJDFK4mhYesSvBbhV3HVJ6n6BfFLgL2CC
WN9qzwyVSJoKxfreomGQvA/v6IxHBxRjt+gECrRqie
VowVfzz/QWG5Wwl+YEg4CCxa/eP2ECbuV

The attacks are executed to capture the Session ID. The integrity of the session

ID is tested by creating 10 numbers of sessions, 20 numbers of sessions and 30
numbers of sessions in the web application between the client and server. The
observed results for each session are given in Table. 7.

 56

Table 7. Results of 92 characters encrypted session ID

No Metrics
50 chars encrypted Session ID

 10
sessions 20 sessions 30 sessions

1 Number of unique session IDs
generated 10 20 30

2 Number of session IDs attacked 0 1 1
3 Number of session IDs prevented 10 19 29
4 Session Hijack prevention rate 100 % 95 % 97 %

Fig. 6. No of session IDs prevented for 10, 20, 30 sessions

Fig. 7. Session Hijack prevention rate for 92 chars encrypted session ID

The results shows that 92 characters encrypted session ID has a session hijack
prevention rate of 100 % for 10 sessions, 95 % for 20 sessions and 97 % for 30
sessions.

Case 3. 212 character encrypted session ID
The server generates the 212 characters session ID and encrypts the 212

characters session ID. The encrypted session ID is assigned to the web client. At

 57

each session, the server assigns the unique session ID to the client. The encrypted
session IDs assigned to the 4 sessions are given in Table 8.

Table 8. 212 character plain session ID and encrypted session ID
Session ID (Length=212) Encrypted session ID

5E3602C889EA285A8E4C107ABA
AF726B858D6B6E31C0D331D7BE
C19EAF79E7755CA729C7B0C7FA
D9FEFFBD0DF078DABC31C25982
861DCFA24FA6495BD9AE4F5D3
DAEF8324509A3B9700F997E11FF
D5C16DBFFF4CD1025CFCCC1Ac
4fbbc05a93e3518151277c6b2e09bd0

RQMQBJqJDFJa+V9tyRkR+i8DDJV520lkbYyZM8
ghRbDtvX3B6tW6W7wyJ5dy6RGPjXwZpvJt2bTSL
TNU0zCAzataQu3SeYx5eYxgURx/Xk4CO0HW752
lze9mF2kmeWSg42QuT6gWdmmLr4GVmL0SzJ0T
rGpUQeFEhksFoZPmzOkdaygNp5awq5bOLkDgliY
NX2LHrPiivOjygqzw67EyNmQXRQN8Vuypm+I5u
QqS335L9QmrRevfqbNpCIGugUNDwfGrQBjngG8
1jhZw2qCq0FDgdMG2h9Q0EBqiTg==

7C3096D9EEADB2917F003202AE
D4CDBF52B8D0644E5EAA3238C6
6249A277269696FC106346D8A431
6ACBBE1326596134F4E5ED8FA1
EBF017DC70B1DCC82C6ED2704E
8E204DDFACCB760B3D26C4B978
1BB24C3B2A795145A4C9ADcd79
42012e8b304760f752e11d74f4af

5QH7fbKJDFIvyR7oj7yDXLWx8pOUFpO78u79d4
KpWdiYG0YIZY9HTLtOW/Xo4g6jfFTWaDHbQ2Z
yw6kU1Cm9RlenHdyGOGI60GeN4w78JCIsxxfKvB
W1bRevkENs7nyhvVpf9PjDFvK/UxWLSvS6xDFr3
ZxiGv/eUcAAcNINXsdYzKWfyEc07YzAn81QGCx
WeH/cTK7fObmv0iEYxPlpt9IS3QD9mhkqDNs/Jb6
SknjQXd31dpCCpdiYbcUFRR9s2OV2cA+2dIabm/
Ugk/j93QU5T/9ezIL+gHbflw==

E7BEA07AE7E335297EEAB1F53F
BD78896500D7CF1C3FF276775688
F9A048FDF857C7799ADACA56B
B0700EA2EE3FDFF18B3DA6F12E
DEE35C671F93C8980F8F3154C3F
A063A7581AA95BDFD7B7A2E537
9CC672E265617743EEA42E3a2a3b
156a16f19f6867dff42b8d3f4a

HAIk8cKJDFLSK1e3r+OVlC3XwUJljxCwDXuyQp
L9Sg507NpeG+/whEFlVAbiA3P2ffBnx+UjBXFoE
YnNxpD91CyzQb9HlVkwVLszYo6JE3bW3dCMV7
+6cg2Mg5lMeXmHsAMAArMnDE7ehIxV6R3gy6a
aYNBDBt7ttTRSj22FGBaLUVt9yAS8Bl/x2kZiNFiy
u0NBJ8Lm83qefoDtifidH1AE7mAr+GGKvoOFR9q
sMsuO344VgfyU1AgYMrV9LHr+/g/tno+5usH30SN
oiFdhbjYmmXNs/3KHNQKpMA==

361295DE73EEB0D9CDF763BB6A
53728DEC9BAA08E3E7EE2D2A47
DCFD9A889A90AE6E24A0841A9F
EBD70EA75074309C1D6498F6547
A3E19F70A240DC73BB5E0651FB
071BA2FA98DBBD4B6D56303E38
D480FF8A4E9312DD9A3D990b666
817e9c1ba30bc2fc46983061229a

swK8O9WJDFJ/NE1+P4jtpjenwKIJoWgpe+tH6TKj
+gmsTM2FQDrI9QLB7P6wP/jz07TyqdqYqbH/Ec7/
kf+ufanCiVlB+hCTDEBIJyqqh7JMxx/rqxl9oV05qV
A7MkFUq7QIsm9A72yTTSOwMDm9Vf8R8Rg7nzj
B29NIfZrcYn3sMPI4sSpu/KwpkWWjmhxyFA1B2i
hHD0mrTBOkuvv+QJ201a3odaF2T6cCK1ycYgXG
cYyPwnm1RXimr9jegCO8+jIbb8CN0VMvruHFEB
ONWVKoTcIpslM1ap52Tw==

The attacks are executed to capture the session ID. The integrity of the session

ID is tested by creating 10 numbers of sessions, 20 sessions and 30 sessions in the
web application between the client and server. The observed results for each session
are given in Table 9.

Table 9. Results of 212 characters encrypted session ID

No Metrics 50 chars encrypted Session ID

 10 sessions 20 sessions 30 sessions

1 Number of unique session IDs
generated 10 20 30

2 Number of session IDs attacked 0 0 0
3 Number of session IDs prevented 10 20 30
4 Session Hijack prevention rate 100 % 100 % 100 %

 58

Fig. 8. No of session IDs prevented for 10, 20, 30 sessions

Fig. 9. Session Hijack prevention rate for 212 chars encrypted session ID

The results show that 212 characters encrypted session ID has a prevention
rate of 100 % for 10 sessions, 100 % for 20 sessions and 100 % for 30 sessions.

4.3. Comparison of the session Hijack prevention rate

The session Hijack prevention rate is the ratio between the number of session IDs
prevented to the total number of session IDs generated. Table 10 presents the
session Hijack prevention rate.

Table 10. Session Hijack attack prevention rate

No Approaches Session Hijack attack prevention rate
10 sessions 20 sessions 30 sessions

1 32 characters encrypted
session ID 90 % 90 % 94 %

2 92 characters encrypted
session ID 100 % 95 % 97 %

3 212 characters encrypted
session ID 100 % 100 % 100 %

 59

Fig. 10. Session Hijack prevention rate for 32, 92 and 212 chars encrypted session ID

Our experimental results proved that 212 characters of the encrypted Session

ID has a session hijack prevention rate of 100 % for 10 sessions, 100 % for 20
sessions and 100 % for 30 sessions. So the 212 characters encrypted session ID
completely prevents the session hijack attacks in wireless networks (Fig. 10).

5. Conclusion

Web application security becomes more important recently for the systems that are
connected to wireless networks. The current web applications are weakly secured
against session hijack attacks. In this paper we have proposed a strong and
encrypted session ID to prevent the session hijack attacks. We have presented our
approach by analysis of three different cases of encrypted session IDs of length 32
characters, 62 characters and 212 characters. We have tested the integrity of the
session ID in a web application by establishing 10 sessions, 20 sessions and 30
sessions between the client and the server. The experimental results show that 212
characters of encrypted session ID completely prevents the session hijack attacks in
wireless networks.

R e f e r e n c e s

1. A l e x, C h i n H u a n g, M o h a m e d. A Secure Cookie Protocol. – In: Proc. of IEEE Conference
on Network Security, 2007, 333-338.

2. C h o m s i r i. HTTPS Hacking Protection. – In: Proc. of IEEE International Conference on
Advanced Information Networking and Applications, 2007, 42-47.

3. M i y a z a k i, A. D. Online Privacy and the Disclosure of Cookie Use: Effects on Consumer Trust
and Anticipated Patronage. – American Marketing Association, Vol. 27, 2008, No 1, 19-33.

4. A d i d a, B. Session Lock: Securing Web Sessions Against Eavesdropping. – In: Proc. of
International Conference on Web Client Security, China, 2008, 517-524.

5. J a c k s o n, C., A. B a r t h. Force HTTPS: Protecting High Security Websites from Network
Attacks. – In: Proc. of International Conference on Web Client Security, China, 2008,
536-552.

6. J u e l s, A., T. M a r k u s. Cache Cookies for Browser Authentication. – In: Proc. of IEEE
International Conference on Security and Privacy, 2008.

 60

7. C h r i s t o p h e r, K i r d a. Pixy: A Static Analysis Tool for Detecting Web Application
Vulnerabilities. – In: Proc. of IEEE International Conference on Security, 2009.

8. H o w a r d, M. Man-in-the Middle Attack to the HTTPS Protocol. – In: Proc. of IEEE Securiry and
Privacy, 2009, 78-81.

9. G a w, S., E. W. F e l t e n. Password Management Strategies for Online Accounts. – In: Proc. of
International Symposium on Usable Privacy and Security (SOUPS), Pittsburgh, USA, 2006,
44-55.

10. R i t c h i e, P. The Security Risks of AJAX / Web 2.0 Applications. Network Security, Secure
Test, Ltd., UK, 2007.

11. B a r t h, A., C. J a c k s o n, J. M i t c h e l l. Robust Defenses for Cross Sire Request Forgery. – In:
Proc. of ACM International Conference on CCS’08, Virginia, USA, 2008, 75-87.

12. A d i d a, B. Session Lock:Securing Web Sessions Against Eavesdropping. – In: Proc. of
International World Wide Web Conference Committee (IW3C2), ACM, Beijing, China,
2008, 517-524.

13. W a n g, F., Y. Z h a n g. A New Provably Secure Authentication and Key Agreement Mechanisms
for SIP Using Certificate Less Public Key Cryptography. 2008, 1-15.

14. P e r d i s c i, R., D. A r i u, P. G i a c i n t o, W. L e e. McPAD: A Multiple Classifier System for
Accurate Payload Based Anomaly Detection. – Journal of Computer Networks, Vol. 53,
2009, No 6, 864-881.

15. E i s e n, O. Catching the Fraudlent Man-in-the-Middle and Main-in-the-Browser. – Network
Security, 2010, No 4, 11-12.

16. L i a o, Y i-P i n, S. S. W a n g. A New Secure Password Authenticated Key Agreement Scheme for
SIP Using Self Certified Public Keys on Elliptic Curves. – Journal of Computer
Communications, Vol. 33, 2010, No 3, 372-380.

17. C i c h o n, J., Z. G o l e b i e w s k i, M. K u t y l o w s k i. From Key Pre-Distribution to Key
Redistribution. – Journal of Theoretical Computer Science, Vol. 45, 2012, No 3, 75-87.

18. C a r b o n e, A. R., L. C o m p a g n a, J. G i n c a r l o, S o r n i o t t i. An Authenication Flaw in
Browser Based Single Sign on Protocols: Impact and Remediations. – Journal of Computers
and Security, Vol. 33, 2012, 41-58.

19. B i e l o v a, N. Survey on Java Script Security Policies and Their Enforcement Mechanisms in a
Web Browser. – Journal of Logic and Algebraic Programming, Available Online from May
2013.

20. X i a n g, Y., X. S h i, J. W u, Z. W a n g, X. Y i n. Sign What You Really Care about Secure BGP
AS-Paths Efficiently. – Journal of Computer Networks, Vol. 57, 2013, No 10, 2250-2265.

21. D o k e v, N., I. B l a g o e v. An Approach for Automatic Transmission of Authenticated Data over
Computer Networks. – Cybernetics and Information Technologies, Vol. 11, 2011,
No 2, 65-82.

22. P e n c h e v a, E., I. A t a n a s o v. Open Access to Call and Session Control in Mobile Networks. –
Cybernetics and Information Technologies, Vol. 10, 2010, No 1, 49-63.

